Hydrolysis of some salts (pages 96-97) ## Experiment "A": pH of aqueous solution of salts Use 0.1 g salt and dissolve it in 10 cm³ distilled water | Type of salts | Structure | Indicator | Observed pH (acidic, basic, neutral) | Balanced equation of hydrolysis | |---------------------------------------|---|--|--------------------------------------|---------------------------------| | Salts of strong acid and strong bases | NaCl | | | | | | K ₂ SO ₄ | universal indicator paper | | | | | Ba(NO ₃) ₂ | | | | | Salts of strong acids and weak bases | NH ₄ Cl | | | | | | (NH ₄) ₂ SO ₄ | universal indicator paper and methyl red indicator solution* | | | | | ZnSO ₄ | | | | | | Al ₂ (SO ₄) ₃ | | | | | Salts of weak acids and strong bases | Na ₂ CO ₃ | universal indicator paper and phenolphthalein solution* | | | | | NaHCO ₃ | | | | | | Na ₂ SO ₃ | | | | | | CH₃COONa | | | | ^{*} use a few drops of indicator solution to test the pH ## **Experiment "B": Suppression of hydrolysis** A few crystals of SnCl₂, SbCl₃ and Bi(NO₃)₃ should be used. Add 5 cm³ distilled water to each salt. What can be seen? Explain your observation. Add 5 cm³ concentrated HCl to each salt and heat them mildly. What can be seen? Explain your observation. Add 1-2 drops of the above prepared solutions to 50 cm³ distilled water. Stir the solutions. What can be observed? Explain your observation and write balanced equations for the hydrolytic reactions.